LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 **B.Sc.** DEGREE EXAMINATION – **MATHEMATICS** FOURTH SEMESTER - APRIL 2023 16/17/18UMT4ES02 – FUZZY SETS AND APPLICATIONS Date: 06-05-2023 Dept. No. Max.: 100 Marks Time: 09:00 AM - 12:00 NOON Part A (10 x 2 = 20)**Answer ALL questions:** 1. What is the difference between fuzzy set and crisp set? 2. Define complement of a fuzzy subset and find the complement of $A = \{(x_1, 0.2), (x_2, 0.5), (x_3, 1), (x_4, 0.9), (x_5, 0.01)\}$ 3. Define the union of two fuzzy relations R and Q. 4. What are the types of index of fuzziness? 5. Define relative hamming distance. 6. What is a limit cycle and a fixed point? 7. What is the difference between FCM model and FRM model? 8. State the difference between ordinary graph and a fuzzy graph. 9. Define ordinary subset nearest to a fuzzy subset and construct the ordinary subset nearest to the fuzzy

subset $A = \{(x_1, 0.8), (x_2, 0.3), (x_3, 0.7), (x_4, 1), (x_5, 0), (x_6, 0.2)\}$ 10. What are the three important properties of a fuzzy number?

Part-B

Answer any FIVE questions:

11. Let R_1 and R_2 be two fuzzy relations.

R_1	Y_1	Y_2	Y_3	Y_4
<i>X</i> ₁	0.3	0.2	1	0
<i>X</i> ₂	0.8	1	0	0.2
<i>X</i> ₃	0.5	0	0.4	0

R2	<i>Y</i> ₁	<i>Y</i> ₂	Y_3	Y_4
<i>X</i> ₁	0.3	0	0.7	0
<i>X</i> ₂	0.1	0.8	1	1
<i>X</i> ₃	0.6	0.9	0.3	0.2

Find (i) algebraic product (ii) algebraic sum and (ii) distinctive sum for R_1 and R_2 .

12. Prove that
$$\sqrt{\sum_{i=1}^{k} P_i^2} \leq \sqrt{\sum_{i=1}^{k} m_i^2} + \sqrt{\sum_{i=1}^{k} n_i^2}$$
 where $P_i, m_i, n_i \in \mathbb{R}^+, i = 1, 2, 3, ..., k$ and $P_i \leq m_i + n_i, i = 1, 2, 3, ..., k$.

- 13. State and prove decomposition theorem.
- 14. Find the power set when $E = \{x_1, x_2, x_3\}$ and $M = \{0, 0.5, 1\}$ and draw the structure of a vectorial lattice.
- 15. Define fuzzy equivalence relation with an example.
- 16. Explain the various types of fuzzy numbers with an example.
- 17. Explain the various attributes of an expert system.

 $(5 \times 8 = 40)$

18. Find the order size and degree and complement for the following graph.

Answer any TWO questions:

 $(2 \times 20 = 40)$

- 19. (a) Explain the following fuzzy relations with an example.
 - (i) symmetric (ii) dissimilitude and (iii) anti- symmetric.

(b) Define fuzzy graph and explain different types with examples.

20. Find $\underline{R}_1 \cdot \underline{R}_2 \cdot \underline{R}_3$ where \cdot is the max-min composition

\underline{R}_{1}	<i>Y</i> ₁	<i>Y</i> ₂	<i>Y</i> ₃	Y_4	<i>Y</i> ₅
X_1	0.2	0.3	0.8	0.6	0.1
X_2	0.3	0.8	0.6	0.6	1
<i>X</i> ₃	0.2	1	0.4	0.1	0

<u>R</u> 3	T_1	T_2	T_3	T_4	T_5
Z_1	0.9	0	0.3	0.4	0.5
Z_2	0.9	0.6	0.4	0.7	0.6
<i>Z</i> ₃	0	0.8	0.9	0.3	0.7
Z_4	0.3	1	0.1	0.4	1

\underline{R}_2	Z_1	Z_2	Z_3	Z_4
<i>Y</i> ₁	1	0.2	0.3	0.4
<i>Y</i> ₂	0.4	1	0.1	0.2
<i>Y</i> ₃	0.3	0.4	1	0.1
Y_4	0.2	0.3	0.4	1
<i>Y</i> ₅	1	0.2	0.3	0.4

21. (a) Let $\underline{A} = \{(x_1, 0.2), (x_2, 0), (x_3, 0), (x_4, 0.6), (x_5, 0.8), (x_6, 0.4), (x_7, 1)\}$ $\underline{B} = \{(x_1, 0.7), (x_2, 0.2), (x_3, 0), (x_4, 0.6), (x_5, 0.5), (x_6, 1), (x_7, 0)\}$ Find (i) $d(\underline{A}, \underline{B})$ (ii) $\delta(\underline{A}, \underline{B})$ (iii) $e^2(\underline{A}, \underline{B})$ (iv) $\in (\underline{A}, \underline{B})$

(b) Explain the structure and the process of fuzzy controller.

22. Explain in detail the impact of Fuzzy Congnitive maps (FCM) in the field of medicines.

\$\$\$\$\$\$\$